Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomech ; 166: 112012, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443276

RESUMEN

In clinical practice, functional limitations in patients with low back pain are subjectively assessed, potentially leading to misdiagnosis and prolonged pain. This paper proposes an objective deep learning (DL) markerless motion capture system that uses a red-green-blue-depth (RGB-D) camera to measure the kinematics of the spine during flexion-extension (FE) through: 1) the development and validation of a DL semantic segmentation algorithm that segments the back into four anatomical classes and 2) the development and validation of a framework that uses these segmentations to measure spine kinematics during FE. Twenty participants performed ten cycles of FE with drawn-on point markers while being recorded with an RGB-D camera. Five of these participants also performed an additional trial where they were recorded with an optical motion capture (OPT) system. The DL algorithm was trained to segment the back and pelvis into four anatomical classes: upper back, lower back, spine, and pelvis. A kinematic framework was then developed to refine these segmentations into upper spine, lower spine, and pelvis masks, which were used to measure spine kinematics after obtaining 3D global coordinates of the mask corners. The segmentation algorithm achieved high accuracy, and the root mean square error (RMSE) between ground truth and predicted lumbar kinematics was < 4°. When comparing markerless and OPT kinematics, RMSE values were < 6°. This work demonstrates the feasibility of using markerless motion capture to assess FE spine movement in clinical settings. Future work will expand the studied movement directions and test on different demographics.


Asunto(s)
Aprendizaje Profundo , Dolor de la Región Lumbar , Humanos , Columna Vertebral , Movimiento , Región Lumbosacra , Fenómenos Biomecánicos , Rango del Movimiento Articular
2.
Med Eng Phys ; 96: 22-28, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34565549

RESUMEN

Using RGB-D cameras as an alternative motion capture device can be advantageous for biomechanical spine motion assessments of movement quality and dysfunction due to their lower cost and complexity. In this study, we evaluated RGB-D camera performance relative to gold-standard optoelectronic motion capture equipment. Twelve healthy young adults (6M, 6F) were recruited to perform repetitive spine flexion-extension, while wearing infrared reflective marker clusters placed over their T10-T12 spinous processes and sacrum, and motion capture data were recorded simultaneously by both systems. Custom computer vision algorithms were developed to extract spine angles from depth data. Root mean square error (RMSE) was calculated for continuous Euler angles, and intraclass correlation coefficients (ICC2,1) were calculated between minimum and maximum angles and range of motion in all movement planes. RMSE was low (RMSE ≤ 2.05°) and reliability was good to excellent (0.849 ≤ ICC2,1 ≤ 0.979) across all movement planes. In conclusion, the proposed algorithm for tracking 3D lumbar spine motion during a sagittal movement task from one RGB-D camera is reliable in comparison to gold-standard motion tracking equipment. Future research will investigate accuracy and validity in a wider variety of movements, and will also investigate the development of novel methods to measure spine motion without using infrared reflective markers.


Asunto(s)
Vértebras Lumbares , Movimiento , Algoritmos , Fenómenos Biomecánicos , Computadores , Humanos , Rango del Movimiento Articular , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...